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Abstract During any goal oriented behavior the dual
processes of generation of dexterous actions and anticipa-
tion of the consequences of potential actionsmust seamlessly
alternate. This article presents a unified neural framework for
generation and forward simulation of goal directed actions
and validates the architecture through diverse experiments on
humanoid and industrial robots. The basic idea is that actions
are consequences of an simulation process that animates
the internal model of the body (namely the body schema),
in the context of intended goals/constraints. Specific focus
is on (a) Learning: how the internal model of the body
can be acquired by any robotic embodiment and extended
to coordinated tools; (b) Configurability: how diverse for-
ward/inverse models of action can be ‘composed’ at runtime
by coupling/decoupling different body (body + tool) chains
with task relevant goals and constraints represented as multi-
referential force fields; and (c) Computational simplicity:
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how both the synthesis of motor commands to coordinate
highly redundant systems and the ensuing forward simula-
tions are realized through well-posed computations without
kinematic inversions. The performance of the neural archi-
tecture is demonstrated through a range of motor tasks on
a 53-DoFs robot iCub and two industrial robots performing
real world assembly with emphasis on dexterity, accuracy,
speed, obstacle avoidance, multiple task-specific constraints,
task-based configurability. Putting into context other ideas in
motor control like the Equilibrium Point Hypothesis, Opti-
mal Control, Active Inference and emerging studies from
neuroscience, the relevance of the proposed framework is
also discussed.

Keywords Body schema · Passive motion paradigm · iCub ·
Motor control · Industrial assembly

1 Introduction

One of the central challenges in action generation is to con-
trol the high-dimensional joint-space of a body (a robot or a
human) while acting in a task-space of much lower dimen-
sionality. This dimensionality imbalance termed as motor
redundancy implies that an infinite number of solutions exist
for reaching the same goal in the task space and the robot has
to choose one from many (Bernstein’s Degrees of Freedom
Problem (Bernstein 1967)). In addition, a robotic controller
operating in real world has to tackle multiple task-specific
constraints both internal, such as bounding the range of rota-
tion of a joint; and external, such as avoiding obstacles or
reaching the target with a specific end-effector pose to allow
further manipulations of grasping, pushing or inserting etc.
Redundancy is worthwhile here as it can allow the body
to avoid obstacles, joint limits, limb interference and attain
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more desirable task-specific postures, but this necessitates
the ability to produce many solutions for one goal (Lash-
ley’s Principle of Motor Equivalence, Lashley 1933). Based
on the nature of motor task, robotic controllers must also be
dynamically configurable i.e. able to recruit in run-time dif-
ferent body segments (arms/torso) and tools on-demand for
executing the task. In this view, the desired computational
mechanisms for robots must bemulti-referential, in the sense
of allowing task-modulated bidirectional dynamic interac-
tions among different spaces: end-effector space, joint space,
and spaces related to the DoFs of manipulated tools. This is
needed because so many tasks particularly in industry for
manufacturing, assembling, cutting, wielding and painting
etc. require robots to use tools. Moreover, in order to exploit
the complex body to its maximum potential in unstructured
environments, a robotic controllermust not only help in shap-
ing the motor output to generate movement but also help
provide the robot with information on the feasibility and con-
sequence of actions. In this article, we propose an internal
representation of the body (the body schema) as a flexible
controller for both simulation and execution of action that
addresses the problem of redundancy through well-posed
computations, considers various task-specific constraints as
well as allows dynamic extension to representations for coor-
dination of different body parts and tools.

1.1 Synergies, equilibrium point hypothesis and optimal
control

Bernstein (1935) was among the first to propose that syner-
gies allow the brain to get rid of task-irrelevant degrees of
freedom, thus focusing on the simpler problem of mastering
a smaller number of task-relevant variables. The concept of
synergy was accompanied in early studies by the attempt
to assign a regulatory role to the spring-like behavior of
muscles (Bernstein 1935) when such springness was indeed
suggested by several experimental studies in the 60s and 70s
(Asatryan and Feldman 1965; Bizzi and Polit 1978, among
others). The central idea was that complex actions can indeed
be achieved without a complex, high dimensional optimiza-
tion process by simply allowing the intrinsic dynamics of
the neuromuscular system to seek its equilibrium state when
trigged by intended goals. This idea, termed the Equilibrium
Point Hypothesis (EPH), exploited two beneficial properties
of the neuromuscular apparatus of the body: (1) to induce
locally (in a muscle-wise manner) an instantaneous distur-
bance compensation action, and (2) to induce globally (in
a total body-wise manner) a multi-dimensional force field
with attractor dynamics. Innovative aspects of the decades
old EPH idea were its strong grounding in the biomechan-
ics of the body and the apparent computational simplicity in
solving the degrees of freedom problem.

The first attempt for a mathematical formulation of thin-
ning out a particular spatio-temporal pattern for a reaching
task among many possible solutions was formulated by
Flash and Hogan (1985), in the framework of the classi-
cal engineering design technique: optimal control theory
(OCT). OCT approaches make use of some form of a Jaco-
bian pseudo-inverse with local null space optimization in
order to determine the inverse kinematics (Baillieul and
Martin 1990; Liégeois 1977;Whitney 1969). However, own-
ing to issues like figuring out of the cost function, heavy
computational costs in calculating pseudo-inverses (Bryson
1999; Scott 2004), biological implausibility (Guigon 2011;
Todorov 2006) etc., OCT and other prevailing approaches are
still being debated (Friston 2011; Mohan andMorasso 2011;
Pickering and Clark 2014). In addition, for cognitive robots
interacting with unstructured environments, it is difficult to
identify and carefully craft a cost function that may promote
the emergence/maturation of purposive, intelligent behavior.
This is relevant if we want to go beyond reach/grasp move-
ments tomore complexmanipulation scenarios in task space,
such as recruiting multiple body segments in sequence or
parallel, avoiding obstacles, operating in non-deterministic
environmentswith unforeseeable force perturbations (Khatib
2004) and use of tools which in fact begins once an object
of interest is reached and grasped. OCT approaches to
task/operational space control discussed in literature can
resolve kinematic redundancy at the velocity (Nakamura and
Hanafusa 1987), acceleration (De Luca and Oriolo 1991;
Luca et al. 1992; Hollerbach and Suh 1987; Hsu et al. 1989;
Senda 1999) and force levels (Featherstone and Khatib 1997;
Khatib 1987). However, as authors in (Nakanishi et al. 2008)
point out: “While impressive results have been generated
with advanced operational space controllers on simulated
humanoid robots in recent studies (Khatib 2004; Sentis and
Khatib 2005), there is a lack of understanding of whether
simpler control methods could achieve similar results, and in
how far the success of idealized simulations extends to actual
robot implementations.”

In contrast to Jacobian pseudo-inverse approach which
requires methods like damped least squares method (DLS,
also called the Levenberg–Marquardt method) to stabi-
lize matrix inversion near singularities (Buss and Kim
2005; Nakamura and Hanafusa 1986; Wampler 1986), other
works propose Jacobian transpose method (Arimoto 2005;
Balestrino et al. 1984; Wolovich and Elliot 1984) to avoid
matrix inversions. However application of these Jacobian
transpose methods has been found difficult in tasks other
than simple reaching to static targets. Another interesting
approach well-discussed in literature is the application of
neural networks to resolve the forward and inverse robot
kinematics problems (Bekey andGoldberg 2012; Lewis et al.
1998). For example, on a robot namedMURPHY,Mel (1988)
proposed and implemented a connectionist architecture with
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two interconnected populations of neural units, one for
retinotopic visual representation and the other value-coded
joint representation, which map the relationships between
the positions of robot’s joints and the state of its visual
field. Another (Lee and Kil 1990) of the earlier works pro-
posed a Bidirectional Mapping Neural Network, composed
of a multilayer feedforward network with hidden units hav-
ing sinusoidal activation functions and a feedback network
forming a recurrent loop around the feedforward network.
The feedforward network is trained to represent the forward
kinematics while the feedback network iteratively generates
joint angle updates based on a Liapunov function to mod-
ify the current joint angles in such a way that the output
of the forward network converges to the desired Cartesian
position and orientation. Jordan and Rumelhart (1992) pro-
posed a feed-forward network consisting of both a forward
and an inverse model where different types of error signals
(prediction error, performance error and predicted perfor-
mance error) are back-propagated into the network to learn
the two models. Similarly, methods like counter propagation
networks (Nguyen et al. 1990) and recurrent neural net-
works (Li et al. 2012) have been successfully implemented
to encode forward and/or inverse kinematics for redundant
robotic manipulators. These studies do address the redun-
dancy resolution problem but only for simple tasks like
reaching and do not consider task-specific constraints inmost
cases. Recent works (Peters and Schaal 2008; Salaün et al.
2009) do address learning in task space control incorporat-
ing internal and external constraints to some extent but do
neither account for recruitment of different body segments
on the fly, nor the learning and extension of body to the use
of tools.

1.2 Actions as animations of the body schema

With emerging trends in neuroscience acting as a motivating
force to revisit old ideas of synergy formation and equilib-
rium point hypothesis, in this study we propose that actions
(overt as well as covert) are the consequences of a simula-
tion on an internal representation of the body viz., the body
schema, with the attractor dynamics of force fields induced
by the goal and task specific constraints. In this work, we
go against the stream of traditional robotics and build a sys-
tem for a growing, adaptive and configurable body schema
that is common to both simulation as well as execution of
movement. This neural implementation takes into account
growth of the body over time as well as can be coherently
extended with other tool-relevant neural networks leading to
expansion of the body schema. It brings the system closer to
idealizing a developing human body schema where constant
changes in kinematics keep occurring in a uniform way. The
novelty lies in the fact that a robot’s kinematics is not constant
as generally assumed in the field of robotics. The proposed

body schema implementationworkswithwell-posed compu-
tations, hence is computationally cheap; brings in flexibility
and task-specific configurability; and manages task-specific
constraints dynamically. The exploitation of a configurable
body schema allows the flexibility of assembling appropri-
ate body-chains on the fly based on the nature of the motor
task and the body segment (and tool) chosen for its exe-
cution. The flexibility of creation and modification of such
body/tool-chains in run-time is likely to be a fundamental
operation in motor planning and action synthesis.

Both in the context of a human or a humanoid robot, our
view is that the body schema must be:

(a) somatotopic i.e. in accordance with the well-known cor-
tical layout;

(b) learnt i.e. acquired by interacting with the world;
(c) action-oriented and notmovement-oriented; here action

is defined as an animation of the body schema;
(d) multi-referential i.e., should act as a synergy generation

machine coordinatingmultiplemotor spaces: joints, end
effectors, tools;

(e) plastic, task-oriented and expandable in order to support
skill learning and incorporate the internal representation
of tools and constraints;

(f) mass-less and not involving precise details of muscle
activations etc., so as to operate equally in overt and
covert conditionswhere there is no neuromuscular activ-
ity;

(g) global but configurable, in the sense that each action
implicitly recruits all the degrees of freedom but config-
uration is equivalent to a task-dependent pruning.

Our work builds up on these topics, emphasizing the cru-
cial role of an adaptive, configurable body schema. What
makes it more interesting is the fact that, such ideas play a
fundamental role not just in control, but also in imagination,
understanding and reasoning about action through a mecha-
nismof decentralized local to global computing and learning.

The rest of the paper is structured as follows. Section 2.1
presents the computational framework for the internal simu-
lation of body schema for goal-directed actions. Section 2.2
discusses the neural implementation of the body schema and
how it can be learnt for an embodied robot while discussing
learning on humanoid robot, iCub. Section 2.3 discusses how
such a plastic body schema can be extended to the coordi-
nation of tools. In Sect. 3.1 we show results of training the
neural network that models the body schema and how other
subtleties like symmetry of the body can be exploited for an
efficient body schema representation. In Sect. 3.2 we eval-
uate the model in a real world industrial assembly task on
a humanoid and two industrial robots showing how task-
specific constraints and task-based configurability are taken
into account. The section also details the use of a perception-
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action loop to achieve higher accuracy in an assembly task
like ours; ease of porting the neural framework to any other
robotic platform with results on two industrial robots; obsta-
cle avoidance using shaped trajectories; exploiting a body
schema to reason about potential actions and open source
release of the developed source code and documentation. We
conclude with a discussion on how the proposed model com-
pares with the previous approaches to robot control, how the
body-schema is a link between motor control and cognition,
and how the proposed model fits into the picture. We end
the discussion with a brief outline of future extensions to our
work.

2 Neural acquisition of an internal body model by
a humanoid robot

2.1 The PMP model

Toexplain the neural control ofmovement, EquilibriumPoint
Hypothesis (EPH) proposed that the posture of the body is
not directly controlled by the brain in a detailed way but is
a biomechanical consequence of equilibrium among a large
set of muscular and environmental forces. In other words,
complex actions can indeed be achieved without a complex,
high dimensional optimization process by simply allowing
the intrinsic dynamics of the neuromuscular system to seek its
equilibrium statewhen trigged by intended goals. A plausible
extension to the theory of EPH is to consider that what occurs
in the brain during both mental simulation and overt execu-
tion of action, reflects an endogenous cortical dynamics very
similar to the physical dynamics implicit in EPH, but realized
through the animation of a flexible, plastic and configurable
internal representation of the body, with the attractor dynam-
ics of force fields induced by the intended goal. This line of
thought emerged during the 80s taking shape as the Passive
Motion Paradigm (PMP) and retreaded recently (Mohan and
Morasso 2011; Mohan et al. 2009; Mussa-Ivaldi et al. 1988).
The basic idea can be formulated in qualitative terms by sug-
gesting that the process by which the brain can determine the
distribution ofwork across a redundant set of joints, when the
end effector is assigned the task of reaching a target point in
space, can be represented as an internal simulation process on
the body schema that calculates how much each joint would
move if an externally induced force, i.e. the goal, pulls the end
effector by a small amount towards the target. PMP models
movements caused by changes in the intrinsic space asmove-
ments that cause changes in the extrinsic space; a feature it
shares with Active Inference (Friston 2010). This may sound
like the chicken versus egg problem, but has significance in
terms of the computational cost, that inverting the natural
direction of causality entails. In addition, we emphasize that
it alsomakes computational sense considering that this line of

thinking naturally converts an ill-posed problem into a well-
posed problem. The advantage is that the well-posed nature
of computation circumvents the need for explicit kinematic
inversion and cost function computation (this is evident if we
intend to control a 53-DoFs humanoid, like iCub).

2.1.1 Computational model

Let a vector q represent the state of a robot in the intrinsic
joint space for a given pose and a vector x identifies the posi-
tion of the end effector of the robot in the extrinsic workspace
for that pose. Then the kinematic transformation x = f (q)

can be expressed as: ẋ = J (q) · q̇ where J (q) is the Jaco-
bian matrix of the transformation. Following steps define the
computational structure of PMP (Mohan et al. 2009; Mussa-
Ivaldi et al. 1988). Figure 1a gives a graphical representation
of the steps involved.

(1) Generate a target-centered, virtual force field in the
extrinsic space:

F = Kext (xT − x) (1)

where xT is the target and Kext is the virtual stiffness of
the attractive field in the extrinsic space. The intensity
of force field F keeps decreasing as the end-effector
approaches the target. Kext determines the shape and
intensity of the force field. In the simplest case, Kext is
proportional to the identity matrix and this corresponds
to an isotropic field, converging to the goal target along
straight flow lines. More complex curved trajectories
like in case of obstacle avoidance or use of tools, can
be obtained by either actively modulating or learning
the appropriate values of the virtual stiffness (Bhat and
Mohan 2015; Mohan et al. 2011).

(2) Map the force field from the extrinsic space into virtual
torque field in the intrinsic space:

T = J T F

where J T is the transposed Jacobian matrix which is
always well defined. In the next section, we show how
these Jacobians can be derived from the learnt body
schema model.

(3) Relax the arm configuration to the applied field:

q̇ = Aint T (2)

where Aint is the virtual admittance matrix in the intrin-
sic space: the modulation of this matrix affects the
relative contributions of the different joints to the overall
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reaching movement. In other words, Aint is joint com-
pliancematrix that leads to the distribution of the torques
among the joint rotations.

(4) Map the arm movement into the extrinsic workspace:

ẋ = J q̇

(5) Integrate over time until equilibrium:

x (t) = ∫tt0 J q̇dτ

The last step of integration gives us a trajectory with the
equilibrium configuration x (t) defining the final posi-
tion of the robot in the extrinsic space.

Figure 1a is a graphical representation of the steps
involved in case of a single kinematic chain (like an arm).
At each time step of this cyclic computational process, tar-
get goal xT in the extrinsic space induces virtual disturbance
forces F on the end-effector, which are calculated using the
virtual stiffness Kext . These forces are then mapped into
equivalent torques T ; this projection is implemented by the
transpose Jacobian J T . These virtual torques T cause incre-
mental joint rotations q̇ as allowed by compliances Aint of
different joints. The incremental change in joint space q̇ is
mapped to the extrinsic space ẋ using the Jacobian matrix
J , causing a small displacement of the end-effector towards
the intended target. This process progresses cyclically till the
time the algorithm converges to an equilibrium state which
is reached asymptotically in the following cases:

(a) When the force field in the extrinsic space is reduced to
zero (Eq. 1) which means the end effector reaches the
target successfully.

(b) When the force field in the intrinsic space becomes
zero (Eq. 2), although the force field in the extrinsic
space is not null and this can happen in the neigh-
borhood of kinematic singularities. In this case, the
target cannot be reached, for example because it is
outside the workspace; however the final configura-
tion has a functional meaning for the motion planner
because it encodes geometric information valuable for
re-planning, such as the desired length of a tool to reach
the target.

PMP networks are task-specific and hence can be assem-
bled on the fly based on the nature of the motor task and the
body chains and tools chosen for execution. As for example,
consider upper body coordination in iCub with two target
goals (see Fig. 1c, bottom panel). Here iCub has to push the
fusebox using the left arm first and then insert the fuse into
the fusebox using its right am. Figure 1b shows composite
PMP network for this case with two attractive force fields

applied to the right and left arms of iCub. Note that basic
PMP subnetwork shown in Fig. 1a is repeated for the right
and the left arm. In this network, there are two additional
nodes, (sum) ‘+’ node and (assignment) ‘=’ node. The (sum)
‘+’ node allows the force fields, Fr and Fl , applied to the end-
effectors of two or more body segments (e.g. the two arms)
to be combined in order to propagate the virtual forces to a
common body segment (e.g. the trunk). Therefore, the joint
space of this body segment, far away from the end effectors,
is recruited by the global force fields and modulated by the
local admittance matrix Aw. This motion is then reflected
back to the impinging segments, by means of the (assign-
ment) ‘=’ node, thus distributing the movements throughout
the overall kinematic structure.

It is to be noted, the above described PMP relaxation
process is asymptotically stable, implying that the equilib-
rium is reached in infinite time. Hence to speed up the
operation time of the planner and to control the reaching time
of the relaxation process, a time varying gain�(t) in the form
of a time base generator (TBG) is inserted into themodel (see
Fig. 1a, yellow node). TBG implements the concept of termi-
nal attractor dynamics (Zak 1991). A terminal attractor is an
equilibrium point reached in a specified finite time in contrast
with the standard attractor systems which converge asymp-
totically. A TBG can be implemented simply by substituting
the relaxation equation (2) with the following one:

q̇ = �(t) · Aint · T

where a possible scalar form of the time-varying gain that
implements the terminal attractor dynamics is the following
one (it uses a minimum-jerk time base generator ξ(t) with
duration τ ):

{
�(t) = ξ̇

/
(1 − ξ)

ξ(t) = 6 · (t/τ)5 − 15 (t/τ)4 + 10 (t/τ)3

�(t) grows monotonically as x approaches the equilibrium
state and diverges to an infinite value in that state, ensur-
ing the convergence of the relaxation in finite time. Other
than implementing the TBG as a scalar function of time like
the one given above, interestingly, a neural representation of
the time-base generator is also feasible. Appendix presents a
neural implementation of the TBG.

2.2 Acquisition of a neural representation of the body
schema by iCub humanoid

That humans have an integrated, internal representation of
their body (the body image or the body schema1) is strongly

1 The difference between body image and body schema is disputed and
is somehow fuzzy. For our purpose we assume that they are two sides
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Fig. 1 a Shows a basic PMP network for a simple kinematic chain (as
the arm). In this simple case, the network is grouped into two motor
spaces, extrinsic or the end-effector space and intrinsic or the joint
space. Each motor space consists of a generalized displacement node
(blue) and a generalized force node (pink). Vertical connections (pur-
ple) denote impedances (K stiffness, A admittance) in the respective
motor spaces and horizontal connections (green) denote the geometric
relation between the two motor spaces, represented by the Jacobian (J).
External and internal constraints, represented as other task-dependent
force/torque fields, bias the relaxation to equilibrium other penalty
functions. The network includes a time base generator (yellow) which
enables the system to reach equilibrium in finite time. b PMP network
for iCub upper body coordination with two target goals, one each to
the right and the left arm of the robot. Note that the basic PMP sub-

network shown in a is repeated for the right and the left arms. In this
network, there are two additional nodes, (sum) ‘+’ node and (assign-
ment) ‘=’ node. The (sum) ‘+’ node allows the two force fields to be
combined in determining the motion of the trunk. The (assignment) ‘=’
node propagates the motion of the trunk to the two arms. In this way,
the motion of each arm is influenced by both force fields. Observe that
the network is fully connected; connectivity articulated in a fashion that
all transformations are well-posed. c Top panel shows the task-specific
configurability of the body schema. Based on the goal and end-effector,
only the concerned motor parts are activated (as shown by red lines). As
shown in the bottom panel of the figure and the video (Online Resource
1), iCub uses the right arm-torso combination in one case and the left
arm-torso one in the other based on the task (Color figure online)

suggested by a variety of pathological conditions which can
only be explained by a deficient internal representation of

Footnote 1 continued
of the same coin: the former one stresses the static component, mainly
based on proprioceptive information whereas the latter is related to the
dynamic synergy formation function.

the body (Head and Holmes 1911). More recent studies (for
reviews see: Graziano and Botvinick 2002; Haggard and
Wolpert 2005) have identified the different cortical areas that
may contribute to this function (area 5 in the superior pari-
etal lobe and possibly premotor and motor areas) and to the
multimodal integration of proprioceptive, visual, tactile and
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motor feedback signals that is necessary for maintaining a
coherent spatiotemporal organization. This body representa-
tion is not a static structure like the Penfield’s homunculus
but keeps on changing as the body keeps growing/ chang-
ing over time, for example, changes from an infant to a fully
grownman or due to limb amputations. In addition, there can
be direct extensions to this schema for example, by the use of
tools (Umiltà et al. 2008) which work as new end-effectors
of the body. On top of this, a body schema in primates is
configurable to a vast number of tasks their bodies have to
performover their lifetime and to the number of end-effectors
they use to perform actions. Since the body schema is plas-
tic biologically, the kinematics of the body has to update
constantly; this makes it questionable if the current trend in
robotics of a fixed kinematics is really the right way to look
at the problem. Only a flexible system can show a brain-
like property, so any system that has to imitate and explain
how the brain coordinates multiple degrees of freedom, or
perform at a comparable degree of dexterity human body
possesses, must have flexibility inbuilt. This is because it
is impossible to know beforehand all the tools, the system
(body/robot) will use and the tasks it will perform in future.
Hence a neural body schema representation of a robot con-
troller, in our view, is the most promising way to achieve
task-specific configurability and adaptability in robot action
coordination.

This body schema representation has been successfully
implemented in experiments on the humanoid robot iCub
and two other industrial robotic arms (see Supplemen-
tary Videos). iCub is an open-source platform based child
humanoid robot (roughly 1m tall), with 53 degrees of free-
dom: 7 DoFs for each arm, 9 for each hand, 6 for head, 3
for trunk and 6 for each leg. With special focus being given
to manipulation and interaction of the robot with the real
world, iCub is characterized by highly sophisticated hands,
flexible oculomotor system and sizable bimanual workspace.
All the low-level code and documentation is provided open
source by the RobotCub Consortium (http://www.robotcub.
org), together with the hardware documentation and CAD
drawings. To perform our experiments, we augmented the
iCub platform with a Kinect PrimeSense camera for better
visual perception. Briefly stating, visual perception system is
structured around two major components. The first of these
components is concerned with the detection of the robot end
effector and objects of interest in RGB-D images that have
been captured with the Kinect sensor (Cai et al. 2013). Fol-
lowing the detection process, the location in space of the
detected end-effector or the objects is estimated using a 3D
pose estimation method from Lourakis and Zabulis (2013).

In this study, PMP body schema model is used to coor-
dinate all the degrees of freedom involved in the left
arm-torso-right arm chain of the baby humanoid, i.e. 7+3+7
DoFs in total. The body schema representation is derived

from the kinesthetic learning by the robot. The iCub arms
are moved in the peripersonal space of the robot and the
end-effector location is tracked using vision and sensory sys-
tems. This is very similar to the way motor babbling occurs
in infants for body schema representation. To get a more
accurate estimate of the correspondence between the extrin-
sic end-effector space and the intrinsic joint space, we iterate
the joint angle values of the robot in a customized volume of
its usable workspace, to generate corresponding end-effector
locations using forward kinematics of the robot. Both ways
are computationally equivalent in terms of giving rise to
data: a training set of joint rotation readings with the cor-
responding coordinates of the end-effector. Now using joint
angle vectors as input and the corresponding 3D end-effector
location vectors as desired output, we train a standard back-
propagation neural network with two hidden layers, using
MATLAB. Following the training process, we can recover
the Jacobian J from the weights of the trained neural net-
work: that represents the body schema, mapping the extrinsic
and intrinsic spaces. Here, we mention again that previous
studies (Jordan 1990; Jordan and Rumelhart 1992; Lee and
Kil 1990; Mel 1988; and others) have also employed back-
propagation networks or other kinds of connectionist neural
networks to learn the forward kinematics of robots. In our
view, many of such supervised learning algorithms can be
used for this training process. The choice of a standard back-
propagation network for learning of the forward model, in
our case, is arbitrary. The core idea to convey is that the
proposed body schema model can be learnt and can take a
well-plausible neuro-biological representation; whichmakes
it a candidate computational model for action generation in
both humans and humanoids. The proposed body schema
model goes beyond learning of a single, fixed body-chain
kinematics, to a distributed internal representation of over-
all body schema composed of different body segments and
tools. This allows learning and recruitment of different body
schema segments on the fly as well as learning and use of
tools while incorporating internal and external constraints at
the same time for task-specific control. Moreover, in contrast
to these works, the proposed body schema model does not
require learning the robot’s inverse kinematics.

We train a multilayer feed forward neural network with
two hidden layers as shown in Fig. 2, to learn the map-
ping X = f (Q) where Q = {qi } is the input vector (of
joint angles), X = {xk} is the output vector (representing 3D
position/orientation of the end-effector) and Z = {z j } and
Y = {yl} vectors are the output of first and second hidden
layer units respectively. Equation 3 expresses the mapping,
where� = {ωi j } are connectionweights from the input layer
to first hidden layer, O = {o jl} are the connection weights
between two hidden layers, W = {wlk} are the connection
weights from the second hidden layer to the output layer,
H = {h j } are the net inputs to the neurons of the first hidden
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Fig. 2 A feed forward neural network composed of an input layer {qi },
two hidden layers {z j } and {yl } and an output layer {xk}. See text for
details

layer and P = {pl} are net inputs to the second hidden layer.
Neurons of the two hidden layers fire using the hyperbolic
tangent function; the output layer neurons are linear.

X = f (Q) ⇒ xk =
∑
l

wlk · g
⎛
⎝∑

j

o jl · g
(∑

i

ωi j qi

)⎞
⎠
(3)

After training the neural network using sensorimotor data
generated by the robot, the Jacobian J can be extracted from
the learnt weight matrices using the following expression:

J = ∂xk
∂qi

=
∑
l

wlk · g′(pl)
∑
l

o jl · g′(h j )wi j

where h j =
∑
i

ωi j qi and pl =
∑
j

o jl g
(
h j

)
.

2.3 Extension of the body schema to coordinated tools

The capability to use tools in order to achieve goals is a cru-
cial component of motor cognition in humans, primates and
some corvids too. The neurophysiological analysis of tool-
use in Japanese macaques has shown that the acquisition of
these skills is accompanied by long-lasting modifications of
their body schema (Iriki et al. 1996;Maravita and Iriki 2004).
Extensive tool-usemodifies their body schema to incorporate
a central representation of the tool. These changes are com-
patible with the notion of the inclusion of tools in the body
schema as if the end effector (e.g. the hand) were elongated
to the tip of the tool (Maravita and Iriki 2004; Umiltà et al.
2008).

A full neural implementation of PMP can also be coher-
ently extended with other tool relevant neural networks.
The tool becomes an extension of the end effector, lead-
ing to the expansion of the body schema. In PMP, the tool
space is represented exactly as the body (see Fig. 3b), by
means of a generalized force and position node, linked ver-
tically by a virtual admittance matrix ATool and horizontally
by the tool Jacobian matrix JTool . The admittance matrix
ATool characterizes the incremental transformation from
force information to position information in the tool space.
The tool Jacobian matrix JTool forms the interface between
the body and the tool and represents the geometrical relation-
ship between the tool and the concerned end effector. While
learning to use different tools, it is the tool Jacobians at the
interface that are needed to be learnt. Based on the tool being
coordinated, it is necessary to load the appropriate device
Jacobian associated with it. In order to get the tool Jaco-
bian JTool , the robot has to practice with the tool to generate
sequences of sensorimotor data that includes:

(1) the instantaneous position of the two hands Q ∈
(xR, yR, zR, xL , yL , zL) coming from proprioception
(and cross-validated by forward model output of PMP
i.e. position node in end effector space).

(2) the resulting consequence i.e. the location of the tool
effector X : (x, y, z)Tool , perceived through vision and
reconstructed to Cartesian coordinates.

As the robot acquires this sensorimotor data by practicing
with the tool, a neural network canbe trained to learn themap-
ping X = f (Q). We use a multilayer feedforward network
with one hidden layer, where Q = {qi } is the input array
(end effector position), X = {xk} is the output array (tool
position), and Z = {z j } is the output of the hidden units.
The mapping can be expressed as shown in Eq. (4), where
� = {ωi j } are the connection weights from the input to the
hidden layer, W = {wlk} are the connection weights from
the hidden to the output layer, H = {h j } are the net inputs
to the neurons of the hidden layer. The neurons of the hidden
layer are characterized by the logistic transfer function; the
output layer is composed of linear neurons.

X = f (Q)⇒

⎧⎪⎨
⎪⎩
h j = ∑

i ωi j qi
z j = g(h j )

xK =∑
j w jk z j =∑

j w jk .
(
g

(∑
i j ωi j qi

))
(4)

Once the neural network is trainedon the sequences of sen-
sorimotor data generated by the robot, the tool Jacobian JT ool
can be extracted from the learnt weight matrix by applying
chain rule in the following way:
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Fig. 3 a Shows iCub using two different tools; employing the left
arm-torso-right arm combination in one case (upper) and the left-arm-
torso chain in the other (lower). b Shows the composite forward/inverse
model of a PMP network with a tool held by two arms. The jacobians of
the tool are extracted from the neural network as shown. As the target
generated force field attracts the tool effector, the end-effectors are con-

sequently pulled to respective positions so as to allow the tool effector
to reach the goal. At the same time, the joints of the two arms and the
waist are being pulled to a configuration that allows the two hands to
reach those desired respective positions. This process of incremental
updating of every node in the network continues till the time the tool
effector reaches the goal

JTool = ∂xk
∂qi

=
∑
j

∂xk
∂z j

∂z j
∂h j

∂h j

∂qi
=

∑
j

w jkg
′(h j )ωi j

We mention here that the number of hidden layers is cho-
sen heuristically based on the complexity of the mapping
problem. In the case of learning of the mapping between
arm-torso joints and end-effector space, a two-layer neural
network was employed because of a large number of degrees
of freedom involved (i.e. 10-DoFs in the arm-torso chain).
However, in case of the tools, a single layer network was
enough to suffice for learning of the accurate Jacobian as a
very small number of DoFs is involved. After the tool Jaco-
bians are learnt by robot, the upper body schema network of
Fig. 1b is extended to incorporate the tool as shown in Fig. 3b.
The resulting Tool+Body PMP network is complete and fully
connected to allow goal directed maneuvering of the tool.
During goal directed movements like making the tool effec-
tor reach a specific pose in the Cartesian space, the targeted
pose acts on the tool effector which is now the most distal
part of the PMP chain. The target induces a force field on the
tool effector, this force field is then incrementally circulated
to the proximal spaces i.e., end effectors and joints, accord-
ing to the information flow in Fig. 3b. In case of tools that
require generation of quasi-circular trajectories to operate

(like the ones shown in Fig. 3a), learning of appropriate stiff-
ness K and timingparameters is needed to execute the desired
spatio-temporal trajectories using the body+ tool chain. The
learning of the parameters and related experiments on these
tools are discussed in Mohan and Morasso (2011) and Bhat
and Mohan (2015) and is out of the scope of this work.

It should be noted that the tool admittance ATool is a prop-
erty of the tool itself and can be approximately estimated as
the ratio of the total force exerted by robot with its hand
and the corresponding displacement of the tool. Since the
displacement of the tools connected to iCub, in our case, is
proportional to the displacement of the iCub’s hand, in such
normal conditions, the tool admittance is approximated as an
identity matrix.

3 Experiments and results

3.1 Training the neural network and exploiting
symmetry

To model the body schema on iCub, we use the forward
kinematics of the iCub to generate about 200,000 data points
for training the neural network. As another way to record
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Table 1 Statistical evaluation
of the trained neural network

Statistical parameter Training dataset Test dataset Validation dataset

Root mean square error 0.810 1.039 1.101

Standard deviation 1.911 2.784 2.974

Values in mm

Fig. 4 a Shows the decreasing mean square errors in the neural net-
work during the training process for the training data set, validation data
set and the test data set. The error values decreased to less than 0.1cm
in this session; b shows the regression analysis plot for the results on the

y-component of the test data i.e., the graph between the target y-values
and the corresponding network output values. The regression value is
very close to 1, showing goodness of the fit (Color figure online)

the data, we kinesthetically move the iCub’s right arm and
torso to babble in its peripersonal space and record the 3D
coordinates, returned by the Kinect sensor, of the end effec-
tor locations reached by the robot it its workspace and the
corresponding joint angles using which these positions were
achieved.Using the joint angle values as input vectors and 3D
end effector locations as target output, we trained a feed for-
ward neural network using a standard error back-propagation
algorithm implemented in MATLAB. Taking a point on the
axis of rotation of the torso pitch-joint of the humanoid as
frame of reference, our experiments involved working with
iCub’s two arms and the torso. In order to achieve the neural
representation for such a body schema, we exploit the fact
that human/humanoid bodies exhibit bilateralmirror symme-
try along the sagittal plane. Since each joint angle lies within
the same range of values for the two arms, and the torso
is shared; the only mirroring would be along one axis with
respect to the robot’s frame of reference. In case of iCub, it is
the y-axis through origin. So for the same set of joint angles
of two arms, forward kinematics results in same coordinate
values for the two axis (x-axis and z-axis in case of iCub) but
the y-axis value is mirrored (meaning positive in sign for one
arm and the negative for the other). Hence a neural represen-
tation of one half of the body can also be used to employ the
other half, thus effectively reducing the burden of training,
execution speed and storage.

Since each iCub arm has 7 joints and the torso has 3 DoFs,
the input vector consisted of 10 values and the target vector
consists of the corresponding 3D location. Number of neu-
rons in first and second hidden layers of the neural network
was determined heuristically as 48 and 55 respectively. Five
random samples of training datasets, test datasets and valida-
tion datasets of sizes 100,000, 20,000 and 20,000 data points
respectively were selected from the generated 200,000 data
points. The neural network was trained using Levenberg–
Marquardt algorithm for all the five samples. Table 1 lists the
averages of the root mean square error and the standard devi-
ation over the different learning runs. Values are expressed
in millimetres [mm] scale.

The results showed that the averaged root mean square
error of the approximator was around 0.1cm as indicated in
Table 1. Figure 4a is a snapshot during one of the training ses-
sions showing graphically the decreasing error curves of the
different datasets. Figure 4b shows the regression analysis
plot of the corresponding training session where a nice over-
lap is shown achieved between the y-component of the test
data and the resulting output data of the trained network. We
also experimented with the size of the training dataset nec-
essary to achieve a well approximating neural network. We
observed that decreasing the size of the training dataset even
up to around 60,000 data points did not impair the network
performance drastically. However networks when trained for
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Table 2 Evaluation of neural network performance using variable sizes
of training dataset (values in mm)

Dataset size 100,000 60,000 30,000 10,000 5000

RMSE (training) 0.810 3.179 27.22 58.66 310.7

smaller datasets, failed validation tests earlier during the
training process and resulted in bad approximators. Table 2
summarizes the results of using different sizes of training
datasets, averaged over 5 random samples for each given
size. RMSE values are expressed in millimetres [mm] scale.

Figure 5a–c show results of the neural PMP architecture in
case of a reaching task, after incorporating the trained neural

network into the model. The right and the left hand are given
two target points which are just reflections of each other
along the sagittal plane of the humanoid body. The initial
positions of the two end-effectors are also mirror reflections
of each other. The trajectories of the end-effectors to reach
the target also mirror each other, as shown in Fig. 5a. Fig-
ure 5b showshow for the twogiven targets, trajectories evolve
along x, y and z directions. Since the targets to reach are
placed symmetrically in the y-direction, the x and z trajec-
tories of the two arms overlap each other whereas their y
trajectories are symmetric along origin as shown in Fig. 5b.
Figure 5c shows the evolving trajectories of ten joint angles
of iCub’s torso-arm while reaching the corresponding given
targets.

Fig. 5 a Shows the end-effector trajectories for the two arms of a body
with bilateral symmetry, when they start from same initial joint angle
values. If the target points to two end effectors are such that they are
mirror reflections of each other along the sagittal plane, the trajectories
generated by two arms will also be mirror images if there are same
internal and external constraints. b Shows the evolution of trajectories
along x, y and z direction for two targets placed symmetrically along y

direction reached by left and right arm. The graph shows the x and z tra-
jectories of the two arms overlap each other whereas their y trajectories
are symmetric along origin. c Depicts the evolution of 10 joint angles of
iCub’s torso-arm for reaching the targets of b. d Shows desired targets
to the end effector (in blue) in and outside the 3D workspace of the
robot and the corresponding solutions reached (in green) (Color figure
online)
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3.2 Experiments on iCub and industrial robots

3.2.1 Neural architecture for action generation in a real
world industrial assembly task

We apply the above described neurally schemed PMP frame-
work in an assembly task setting inspired by practical
day-to-day challenges in industrial arena.All the experiments
are carried out in the context of a real world assembly sce-
nario where the robot is presented with a fuse and a fuse box,
and the task of the robot is to pick the fuse up andfinally insert
it into a hole of the fuse box. Such a task is very challenging
from a motor action/cognition perspective as the sub-tasks
involved to realize this goal include reaching, picking, push-
ing and inserting dynamically during the execution of the
plan, which in of themselves are non-trivial. The robot has to
reach the object (fuse) while maintaining a desirable posture
of the bodywhere joints are in theirmid-range values in order
to minimize the strain and avoid self-damage. Also the robot
has to reach with a high level of accuracy on top of the fuse to
make the next step of, picking the fuse up, successful. After
reaching, the robot has to grasp the fusewith a particularwrist
orientation so that the object is picked up properly making
the insertion feasible later on. After picking up the fuse, the
robot goes out to reach the fusebox and if the fusebox is not
reachable to the hand that has the fuse, the fusebox has to be
pushed by the other hand into the workspace area of the hand
that has the fuse, tomake the insertion possible. Once the fuse
box is reachable, the system has to align the fuse on top of
the fusebox to reduce any chances of failure while inserting
the fuse into fusebox. Failure is quite possible given the fact
that the fusebox hole is small with a diameter of 2.5cm.

3.2.2 Performance evaluation of the neural architecture on
iCub platform

To evaluate the neural PMP controller, we first performed
experiments on iCub Simulator (http://wiki.icub.org/brain/
group__icub__Simulation.html) to reach different target
locations in the reachable workspace. We took an exhaus-
tive set of 24,000 reachable locations distributed uniformly
in the workspace. The results showed that the target locations
can be reached accurately with a root mean square error of

Table 3 Results of the neural controller on iCub Simulator in reaching
a given target (values in mm)

Statistical parameter Value

Root mean square error 3.073

Standard deviation 2.984

Root mean square error [|x | , |y| , |z|] [4.12, 3.11, 1.30]

Standard deviation [|x | , |y| , |z|] [3.67, 3.10, 1.91]

3.073mm.Table 3 gives the statistical details of experimental
results. All the values are expressed in millimetres [mm].

As obvious from the tabulated statistics, the RMSE error
as well as the standard deviation in z-axis was much lower
than the corresponding values along x-axis and y-axis. This
is due to that fact the volume of chosen workspace (about
275 × 200 × 120mm3) for generating the training data was
smaller in dimension along z-axis than in the other two axes.
The resulting greater density of data points along the z-
direction lead to better training and performance of the learnt
controller along the z-axis than in the other two axes. A fur-
ther exploration of about 900 target points in and outside
the workspace (see Fig. 5d) showed that even if the target
is outside the reachable workspace, the controller neverthe-
less tries to approach the target as well as possible by fully
extending the arm to a position that is at a minimum distance
from the target. Hence, what we see in such cases is a gentle
degradation of performance that characterizes humans in the
same situations. Although there is no exact solution to the
problem, the network does its best.

As this research work was carried out under European
Union FP7 project named DARWIN (http://www.darwin-
project.eu) which resulted in the development of a dexterous
cognitive system for assembly tasks, the experimental results
were carried out to validate the overall DARWIN cognitive
architecture wherein the proposed PMP body schema con-
troller was implemented for action generation in iCub and
two industrial robots. A broad set of experiments was car-
ried out to document the performance of the overall cognitive
architecture in different variations of the assembly task. A
complete evaluation and detailed specifications of the DAR-
WIN cognitive system can be found in a deliverable (D9.4)
of the EU FP7 project DARWIN (DARWIN D9.4 2014). To
summarize the results here, we define;

Pick Success Rate = Number of times a f use is picked up success f ully by iCub

Number of attempts iCub makes to pick up the f use

Insertion Success Rate = Number of times a f use is success f ully inserted by iCub

Number of attempts iCub makes to insert the f use
.

Overall T ask Success Rate = Number of success f ul f usebox assemblies

Number of f usebox assembly attempts
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Table 4 Results of iCub
performance in an industrial
assembly task

Pick success rate Insertion success rate Overall task success rate

70% 70% 60%

Fig. 6 a Composite forward/inverse model with two attractive force
fields applied to the arm, a field F1 that identifies the desired position of
the hand/fingertip and a field F2 that helps achieving a desired pose of
the hand via an attractor applied to the wrist. This network assumes that
the shoulder of the robot is grounded: thismeans that the two force fields
do not propagate beyond the shoulder joint. Force fields representing
other constraints like joint limits and net effort to be applied (scaled
appropriately based on their relevance to the task) are also superim-
posed on the earlier fields F1 and F2. The time base generator takes

care of the temporal aspects of the relaxation of the system to equilib-
rium. In this way, superimposed force fields representing the goals and
task relevant mixtures of constraints can pull a network of task relevant
parts of an internal model of the body to equilibrium. b iCub picking up
the fuse with the right hand with wrist orientation different than that it
uses for pushing with the left hand; refer to the video (Online Resource
1). c Shows a representation of the PMP relaxation process dynamics
of a body with three joints when reaching to targets in a 2D space with
different wrist orientations

Table 4 shows the evaluation results over 40 different trials in
a basic assembly task carried out by iCub. It has to be noted
that these performance rates are equally affected by other
components of the DARWIN cognitive architecture. Prob-
lems like non-detection, mis-localization, improper grasping
etc. cumulatively affect the performance of the overall sys-
tem. In fact, a major upgrade of the other sub-components
of DARWIN cognitive system improved the overall perfor-
mance to 95% on the industrial platform (see details in a
subsection on industrial robots later in this article).

3.2.3 Dealing with multiple constraints including wrist
orientation

Visual goals (i.e. fuse and fusebox) identified by the visual
perception systems are translated into corresponding spatial
goals (3D locations) and directed towards the appropriate
end-effector (hand) for subsequent realization by the action.
Based on the goal, and the dynamically presented set of con-

straints related to the nature of the task, for example, just
grasping a fuse with a particular wrist orientation or using an
end effector to push the fusebox, a custom relaxation network
is built in real time as described in below.

The distributed nature of the forward inversemodel allows
us to easily incorporate the process of relaxation at a target
position with a desired orientation of the wrist. Orienting the
wrist appropriately is critical when the robot has to pick up an
object (fuse) from above or push it (fusebox) sideways. It is
also important when iCub tries to pick up tools placed at arbi-
trary orientations on the table, for further use to attain goals.
Further, for many tools, the effective extension of reaching
space that the robot could get using a tool is a function of the
orientation with which it is grasped. The resulting computa-
tional network is shown in Fig. 6. The new addition to the
scheme is the outer loop that generates a new force field F2
that defines an attractor applied to the wrist. In addition, in
many cases, joints need to be constrained not to exceed some
pre-defined limits, for example in case of pushing, the upper
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Fig. 7 aTrajectories of the robot in x-y planewhile attempting to reach
a target (x= −370mm; y=175mm; z=23mm) using different kine-
matic chains after starting from same initial position (x= −303mm;
y=9mm; z= 23mm); b shows some of the joint trajectories involved

in two cases. The contribution of torso joints makes the goal reachable;
trajectories of torso joint angles can be seen changing in the right panel
(in the left panel they are zero throughout)

arm should not touch torso (to avoid self-damage). Hence, in
this case there are three weighted, superimposed force fields
that shape the spatio-temporal behavior of the system: (1) To
the end-effector (to reach the target); (2) To the wrist (for
orientation); and (3) A force field in joint space as internal
constraints of Joint limits.

3.2.4 Dynamic recruitment of additional motor spaces

PMP allows the flexibility to engage different parts of the
body schema run-time in performing a task. Based on the
requirements of the task, different degrees of freedom can be
recruited to accomplish goals. For example, when a goal is
not reachable by stretching the arm alone towards the goal,
the DoFs of the waist can be mobilized to help attain the
desired posture for reaching the goal. Figure 7a shows the
system being asked to reach a target using only the arm in
one case (blue trajectory) and the torso-arm chain in the other
case (green trajectory). The target location (red square in
the figure) is such that a fully stretched arm cannot reach if

there is no torso movement. As the figure shows, the system
relaxes to the desired solution only when the joints of the
waist are coupled in the kinematic chain. Figure 7b shows
some of the joint trajectories involved in two cases. The left
panel shows joint trajectories when the waist is not recruited
in the relaxation process; the waist joint values are static at
zero radians and the target cannot be achieved by extending
the arm alone. Only after the torso joints contribute to the
relaxation process, the goal is reached; trajectories of torso
joint angles can be seen changing in the right panel.

3.2.5 Perception–action–proprioception loop for higher
accuracy in an assembly task

Challenges in performing such an industrial assembly task
also arisewhen thevisual perception is not very accurate, e.g.,
because ofminor errors in camera calibration; and the objects
to deal with are small in size. Given that both the objects (fuse
and a hole in fusebox) are of very small size, an insertion
task like ours requires a reaching accuracy to about 0.5cm.
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Fig. 8 The loop of integration between vision, motion and propriocep-
tion. Using information from vision the distance between the location
of hole Xv

H and the location of fuse Xv
F is added to the current location

of the end effector (from the forward model of neural PMP) to pro-

vide a new goal to the end effector. The alignment continues till vision
estimated distance between the fuse and the hole is greater than 5mm.
Refer to Supplementary Videos (Online Resources 1 and 2) to see the
robots performing alignment

Reaching directly to the hole, using visual information only,
is not successful as there is some inaccuracy in estimating the
location of the object. In order to overcome this limitation,
we exploit the fact that the error by the visual perception in
the localization of both the fuse and the hole of the fusebox
is relatively same. Hence from inaccurate object locations,
we can still estimate the distance between the fuse and the
hole with fair accuracy. Using this distance as a measure of
a virtual force field that pulls the end effector (hand of the
iCub) such that the distance between the two objects (fuse
and hole) is minimized, the goal of aligning the fuse on top
of the hole is realized. Each time the current location of the
end effector is provided by the forward model of the neural
PMP. If Xv

F , X
v
H denote the perceptually estimated locations

of the fuse and the hole respectively, then Eq. (1) calculating
the attractive force field for PMP dynamics can be rewritten
as:

F = Kext
(
Xv
H − Xv

F

)

Figure 8 shows how the information from vision is used in a
loop to drive themotionof the robots using the proprioception
from neural PMP. The loop continues until Xv

H − Xv
F <

5mm.

3.2.6 Porting the neural PMP framework to coordinate for
other embodiments

The neural PMP framework can easily be ported to any other
embodiment with the only change required being the substi-
tution of the neural network trained for mapping between the
intrinsic and extrinsic spaces. For a new robot, a new neural

network can be trained, which learns the mapping between
its joint space and the end effector space, and then imported
into the PMP framework. We implemented the same frame-
work on two industrial robots (Stäubli RX130B and TX90L
each with 6 degrees of freedom) by training a new feedfor-
ward neural network for each. The trainings converged much
faster than that of iCub given the fewer DoFs. The average
mean square error of the TX controller in the reaching task
was also much lower (<0.05cm) than in the case of iCub.
The same assembly task scenario was carried out using the
two robots (see Fig. 9); the only difference here was two
robots were used as two arms that work together to perform
the assembly.

Here also, the proposed PMP architecture was imple-
mented for action generation and control of the two robots
as part of the DARWIN cognitive system. In this case,
the DARWIN cognitive system was extensively evaluated/
benchmarked against a state of the art industrial system per-
forming different versions of the afore-mentioned assembly
task. The overall performance of the presented architec-
ture was comparable in all aspects against the industrial
benchmarking system. A complete evaluation and detailed
specifications of both systems can be found in a deliverable
(D9.5) of the EU FP7 project DARWIN (DARWIN D9.5
2015). Table 5 shows (a) the evaluation results of an indus-
trial robot (TX) in a reaching task and (b) success rates in a
basic assembly task.

3.2.7 Obstacle avoidance using continuous reaching

For a robot operating in unstructured environments, obsta-
cles do arise as the robot moves its body to reach out to target
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Fig. 9 The two robots performing the assembly task together. The robot on the left (a) pushes the fusebox and the robot on the right (b) completes
the insertion. Refer to Supplementary Videos (Online Resources 2 and 3)

Table 5 Statistical results (a) of
industrial robot TX in simple
reaching task in a simulated
environment; (b) performance of
Industrial robots in an industrial
assembly task

Statistical parameter Value

a

Root mean square error 0.0377

Standard deviation 0.0369

Mean square error[|x | , |y| , |z|] [0.0512, 0.0381, 0.0142]

Standard deviation [|x | , |y| , |z|] [0.0494, 0.0381, 0.0140]

Pick success rate Insertion success rate Overall task success rate

b

81% 98% 95%

goals. Hence an obstacle avoidance mechanism is needed to
be incorporated in the motion planning framework so as to
complete a task in a safe way. In the assembly task, since
objects are scattered in the scene at random locations, some
of them can obstruct the path of the robotic arm while it
tries to reach the others. In order to complete the assem-
bly task successfully in presence of multiple objects (fuses
and fuseboxes), the neural PMP coordinating the robot is
augmented with a virtual trajectory generation system that
dynamically generates a virtual path for themotion of the end
effector based on the notion of shape formation (see Mohan
et al. 2011, for details). By taking into account the geometric
information related to possible obstacles to be avoided and
the target goal (provided by vision), a spatio-temporal vir-
tual trajectory of a desired shape, that avoids all obstacles,
is synthesized for the robot to follow. The synthesized vir-
tual trajectory acts as a moving point attractor that the end
effector of the robot has to track continuously. This in turn,
results in generation of necessary motor commands through
PMP simulation. In this sense, while the PMP deploys a
parallel composition of force fields, the virtual trajectory gen-

eration system deploys a serial composition of equilibrium
points that animates the internal bodymodel. The framework
operates real time, takes into account multiple obstacles and
does not get stuck in local minima. Figure 10 shows cases
of goal directed reaching in an industrial robot where the
robot successfully performs the assembly task by moving
in a bump shaped trajectory in order to avoid obstacles in
the environment. The concept of different kinds of shapes,
their composition, generation and application using the vir-
tual trajectory generation system is discussed inMohan et al.
(2011).

3.2.8 Exploiting the power of imagined actions

Considering that real and imagined actions turn out to be
similar indeed, the proposition that even overt actions are
a product of an internal simulation is a defining feature of
PMP architecture. Since PMP body schema model relies on
simulating the action on the body schema before execution in
real, it can act as a forward model to predict the consequence
of an action. Such mental simulations can be exploited by
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Fig. 10 a (1–5) The robot end effector/gripper following a bump
shaped trajectory to avoid obstacles when assembling the fusebox. b
In a different setup, the virtual trajectory (in red) that the robot end

effector has to follow when reaching a target and avoiding collision
with the other and the actual trajectory of the robot end effector (in
green) (Color figure online)

a higher level reasoning system to validate the consistency
of the motor plan before the actual delivery of the generated
motor commands to the controller and to re-plan the sequence
of necessary actions if needed. We exploited this feature of
PMP in two cases:

(a) Dealing with unreachability: When targeting to reach
for an object (fusebox), the PMP dynamics on the body
schema structure can infer using the forward model, if
the object is in an arm’s peripersonal space and hence
reachable or not. If it happens to be not-reachable to
that arm, the higher level reasoning system can use this
inference from PMP to plan a different course of actions
to complete the task. In our case, the reasoning system
planned to employ another body schema chain i.e., the
other arm to push the object (fusebox) into the desired
reachable workspace (see Figs. 6b, 9), following which
goal of insertion was realized. The higher level rea-
soning could also use the residual error or measure of
inconsistency in reaching, as an inference to trigger the
possible conjunction of an appropriate tool into the body
schema network, to reach the goal.

(b) Avoiding collisions: In robotic platforms with
robots/arms operating in parallel while working in a
sharedworkspace, collision prediction/avoidancemech-
anisms are compulsory for safe and robust functionality.
In a similar setup (see Fig. 11) when two robots have
to reach two targets/objects in parallel, the Neural PMP
forward/Inverse model when given a spatial configura-
tion of objects in the scene, simulates reachability and
anticipated motion trajectories of the robots during the
task. The anticipated trajectories are then exploited by a
higher level reasoning to detect possible collisions and
re-plan the course of action if a possible collision using
the two motion trajectories is anticipated.

3.2.9 Open source release of source code and
documentation

The latest version of the software implementation (i.e. source
code in C++) of the neural PMP architecture is released
under GPL license and is available in iCub’s open-source
repository (robotcub) which is hosted on www.sourceforge.
net. Both source code and user manual for installation
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Fig. 11 Some simulated results of parallel operation of two industrial
robots in a shared workspace a without collision, b simulated collision
(i.e. actions that are anticipated but not executed) and c planned future

motion. Refer to Supplementary Video (Online Resource 3) to see the
robots working in parallel without any collisions

and customized use of the architecture on different robotic
platforms is available at https://svn.code.sf.net/p/robotcub/
code/trunk/iCub/contrib/src/morphoGen/. The source code
of modules for iCub (named PMP) and industrial robots
(named PMPRX_Neural) are inside the subdirectories of
morphoGen/src/control folder, while morphoGen/app con-
tains all the configuration files for loading the neural
networks and codes for data-generation and training of
the neural networks (see foldersmorphoGen/app/perception
ActionCycleApp/ and morphoGen/app/RXneural for iCub
and industrial robots respectively). The implementations
use YARP platform (http://wiki.icub.org/yarpdoc/) for com-
munication of messages. The User manual can be found
inside morphoGen/documentation folder. It gives a detailed
description on how to run the modules and how to use the
available code for training new neural networks. In addition,
videos of the robots performing assembly tasks using neural
PMP are provided as supplementary material.

4 Discussion

This paper proposed a neural framework for action genera-
tion and control of humanoid and industrial robots employing
the internal representation of the body, i.e., the body schema,
as the controller. The body schema consists of distributed
representations of the different kinematic segments of the
body and the tools all networked together in serial, parallel
or hybrid geometries. This body schema is learnt in the form
of different neural networks as exemplified in the article. It is
plastic and can be extended as well as configured as per the
requirements of a given task. For action generation, the body
schema is subjected to multiple virtual force fields to reach
different goals and fulfil multiple constraints; these forces
induce a passive motion in the body schema to relax it to an
equilibrium configuration in finite time reaching the goal.

The overall framework is robust and operates by means of
incremental, well-posed direct computations while avoiding

anymodel inversions. There are no predefined cost functions/
optimization constraints likeminimum torque,minimum jerk
etc. common to most control models in literature; hence
there is flexibility to operate online facilitating run-time co-
evolution of plans and the corresponding control processes
needed to realize them. The framework allows task-specific
imposition of force fields onto themodel dynamics tomaneu-
ver the body movement in a task-dependent way. Different
body segments and tools can be linked together into custom
networks systematically as per the task at hand. Moreover,
different degrees of freedom of each kinematic chain can be
recruited as per their variable compliances.

In comparison to other force field based methods in con-
trol, our approach has two main advantages:

(a) Typical force field based methods (Featherstone and
Khatib 1997; Khatib 1987) to motor control are designed
to apply to systems which are characterized by a single
geometric relationship/Jacobianmatrix and hence are not
flexible to run-time recruitment of different kinematic
chains as per task requirements. In contrast, the net-
worked distributed representation of different kinematic
chains as a body schema facilitates their use on demand.

(b) The PMP body schema model not only allows gener-
ating unique solutions, but a class of solutions by the
use of impedances, i.e. stiffness and admittances, as tun-
able parameters. This is different from the approach of
using an inertia-weighted pseudo-inverse (Khatib 1987)
because generally the controller cannot tune directly the
inertial properties of the manipulator. Moreover, after
several experimental tests on previously proposed force
field operational controllers, Nakanishi et al. (2008)
reported that these approaches degrade in the face ofmod-
eling errors and did not score well in their experimental
evaluations. They attribute this degradation to the inaccu-
racies of the estimated inertiamatrix, as thismatrix and its
inverse are used at many places of the control law. As an
aside, calculation of the inertia-weighted pseudo-inverse
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in these control models is computationally expensive
(Featherstone 1987) whereas PMP body schema com-
putations are local, well-posed and hence, cheap.

Another interesting feature of the proposedbody schemacon-
troller is that it is inherently a forward-inverse model that can
generate the feasible motor commands to transform the cur-
rent position of the body into the desired one (inverse model)
as well as predict the future state (forward model) of the
body from the motor commands generated by inverse model.
The body schema plays the role of a shared representation
on which both forward and inverse models are realized dur-
ing the cyclic exchange of energy between different motor
spaces inside the PMP networks. Architecture of forward-
inverse models and their role in the cognitive architectures is
under recent debate (Pickering and Clark 2014).

4.1 Real and imagined actions: the butterfly and pupa

The article presented a neural framework to the PMP mech-
anism through the incorporation of an extendable body
schema discussing the results from motor control perspec-
tive. However, the neural controller described here can not
only generate but also simulate action. This is very relevant
in the context of studies on motor cognition where ques-
tions regarding the representations of actions in brain, how
these are formed and handled, are still open. How does
the brain perceive and understand not only the intended
actions that will eventually be executed, but also imagined
actions; how does it learn by observation, or even under-
stand the behavior and intentions of other people’s actions?
How is the brain able not only to shape the motor system
in anticipation to execution, but also provide the self with
information on the feasibility and the meaning of potential
actions? In this quest, mounting research using advanced
techniques like brain imaging for studying motor imagery
(Frey andGerry 2006;Grafton 2009;Kranczioch et al. 2009),
and embodied cognition (Gallese and Lakoff 2005; Gallese
and Sinigaglia 2011; Pickering and Clark 2014; Sevdalis
and Keller 2011) confirm that distributed, multi-centered
neural activity is consistently detected during different con-
ditions like imagination of movement, observation/imitation
of other’s actions, and comprehension of language. These
studies aimed at direct access to the mental states in the
absence of overt movements, make clear that actions involve
a covert stage. Covert and overt stages thus represent a con-
tinuum like two life stages of a butterfly, the pupa and the
adult; such that every overtly executed action (the adult fly)
implies the existence of a covert stage (the pupa), whereas
a covert action may not necessarily turn out into an overt
action. In our view, the link or the middleware between the
two forms/stages is the body schema mechanism. Running
internal simulations on an interconnected set of neuronal net-

works must be the main function of the body schema. Hence
we believe our model provides a computational basis to val-
idate the results from neuroscience in this direction. In this
context, we are currently investigating the incorporation of
the model in cognitive architectures for action simulation
in different social contexts like observation, imitation and
inference about the actions of others. Other future develop-
ments to the work include experiments with learning and
use of a range of tools to address the current needs in social
and industrial robotics. Problems of task-specific tool-use by
social robots for household activities like cooking, cleaning
etc., and industrial robots in manufacturing and assembly
like, cutting, drilling, painting are planned to be addressed
as future extensions to this work.
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Appendix: A neural implementation of time base
generator

A time base generator (TBG) is a scalar dynamical system
in the normalized variable ξ given by:

ξ̇ = γ (ξ(1 − ξ))β

β ∈ (0, 1), (5)

where ξ(t) is a smooth sigmoid from ξ(0) = 0 to ξ(t f ) = 1,
with a bell shaped velocity profile and desired finite move-
ment duration t f . The system has two equilibrium points, an
unstable one at ξ = 0 and a stable one at ξ = 1, consequently
the system always approaches stably to ξ = 1. The time his-
tory of the TBG can be regulated using β. The γ parameter
has a dual function: controlling the convergence time and to
reset the TBG andmake it excitable for subsequent activation
cycles. As regards to the exponent β, it can be shown that the
condition,2 β > 2/3 is essential in order for the third deriv-
ative of ξ (t) (Jerk) to be defined at t = 0 and t = t f . Under
these conditions, it can be seen that the dynamics of the sys-
tem are Non Lipscitzian,3 i.e. equilibrium configurations do
not satisfy Lipschitz condition forODE since |∂ξ̇/∂ξ | → ∞.

2 Condition to have a bounded acceleration, ∂2ξ/∂t2 = −βγ 2(ξ(1 −
ξ))2β−1(1 − 2ξ), at equilibrium point is, 0.5 < β < 1. The Jerk of
ξ (t), ∂3ξ/∂t3 = βγ 3(ξ(1− ξ))3β−2{(2β − 1)(1− 2ξ)2 − 2ξ(1− ξ))}
imposes an additional restriction of having 0.66 < β < 1 for bounded
jerk.
3 Non Lipschitzian systems have point attractors of infinite stability
in the sense that the gradient of their Lyapnov function diverges at
equilibrium point, a consequence is that they reach equilibrium in finite
time (it is a terminal attractor). ∂ξ̇/∂ξ = βγ (ξ(1− ξ))β−1(1− 2ξ), as
β < 1, the expression tends to 8, at equilibrium points.
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Fig. 12 Reciprocal inhibition neural network for TBG

This implies that equilibrium point is a terminal attractor, and
systems with terminal attractor dynamics always converge in
finite time (Zak 1991).

To derive the convergence time, let us consider a simpler
dynamical system:

ξ̇ = γ ξβ.

t f =
∫ t f

0
dt =

∫ 1

0
∂ξ/γ ξβ = 1/γ (1 − β)

Once again we can see that equilibrium point is a terminal
attractor as convergence time is always finite and can be pre-
cisely specified through the constant γ = 1/t f (1 − β).

Remarkably, the above dynamical system can be approx-
imated using a reciprocal inhibition network consisting of
two neurons. A single neural element is an integrate-and fire
neuron comprised of a multiplier, an integrator and a power
function. In the integrate-and-fire model, input spikes are
multiplied by their respective synaptic weights, summed and
integrated over time. If the integral exceeds a threshold, the
neuron fires and the integration restarts. The functionality in
this case can be expressed as:

ξ̇i =
∏

wiζi

where

ζi = ξ
β
i

The reciprocal inhibition network of two neurons modeling
the TBG is shown in Fig. 12.

Dynamic behavior of the neuron can be written as

ξ̇1 = −γ ξ
β
1 ξ

β
2 = −ξ̇2

ξ1(t) + ξ2(t) = 1

∴ ξ̇2 = γ ξ
β
1 ξ

β
2 = γ ξ

β
2 (1 − ξ2)

β = γ (ξ2(1 − ξ2))
β

This is same as Eq. 5.
To perform any reaching movement, several joints—

shoulder, elbow, wrist, fingers move cooperatively forming

a synergy in a flexible and dynamic fashion. While groups
of fingers may operate synergistically while playing a guitar
chord, individual fingers are controlled while playing a lead.
One of the basic problems of motor control is to understand
how neural control structures quickly and flexibly organize
and engage different parts of the body schema to cooperate
synergistically in a movement sequence. The above TBG can
be used to dynamically couple and decouple synergies in dif-
ferent ways based on task specification. In sum, by selecting
two parameters of the TBG (t f and β), a family of time-
varying signals can be generated. From the point of view
of real-time implementation, it is possible to use any scalar
function of time satisfying the properties of described above
or a look-up table etc.
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